

	
		
			Skip to content		

		
			
				
					
											Yagisanatode

												Google Workspace and Software Development

									

									Menu

					
													
									Code
	Google Apps Script
	Google Sheets
	GWAOw!
	Courses
	Products
	Python
	About
	Privacy Policy
	Google Add-on Apps Terms and Conditions (“Terms”)
	Contact
	Advertise

	Hire Me

							
						
											

							

											
					
											
				

					

		

	
		

	
		Google Apps Script: Automated PDF Certificated Creator That Is Emailed to the Attendee (Updated Feb 2022)
	

	
	
		
				

	
	
		Google Apps Script: DriveApp, PropertiesService, SpreadsheetApp, GmailApp, SlidesApp. Google Slides, Google Sheets.

Have you ever wondered how people create certificates en mass and send them out automatically? You are in the right place.

In this tutorial, we are going to:

	Create Certificates of Attendance for multiple attendees using Google Slides and a list of attendees in Google Sheets.
	Send those certificates as an attached PDF to the attendees.

We’ll set it up so it is super user-friendly with a handy menu in your Google Slide template so that all you have to do is to update your Google Sheet of names each time you run the course and then click a few buttons.

Also, we will run an example so you can see how it all works and what you need to do to set it up.

For the coders out there, I think I have documented the Google Apps Script code enough for you to figure out how to quickly implement your own project. However, I have also added a smalls discussion of some parts of the code at the end.

This is a standalone tutorial. However, it draws from two main tutorials if you want to explore those first (Though it is not essential):

	Google Apps Script: Create multiple versions of a document based on Google Sheet Data and a Google Doc Template (Mail Merge)
	Create a Student Certificate of Attendance with Google Slides and Export it as a PDF or Print it

Let’s get cracking.

Table of Contents

Toggle	Preparing your Certificate Google Slide
	Preparing your Google Sheet merge data
	The Code	Code.gs
	Map.gs

	Set up the Code for your Project	Maps.gs
	Code.gs	Global variables
	Writing your email message

	Running the Code	Getting the new menu
	Creating the Certificates
	Emailing the Certificates as PDFs

	A Little Summary of Highlights for the Coders	Emailing the attendee as a separate process.
	Converting the Slide to PDF was super easy

	Conclusion

Preparing your Certificate Google Slide

Take a look at the Certificate of Attendance created in Google Slides:

Click to expand image.
If you want to play along, you can grab this Google Slide from here:

Certificate of Attendance: Warp Slippers

Just go to File > Make a copy to create a version of your own to play with.

In each certificate, I have 3 things I want to change for each person receiving the certificate. I have indicated this by adding double curly braces and a key reference:

	Name: {{name}}
	Attendance: {{attendance}}
	Grade: {{grade}}

Our handy code will draw from these key references and replace them with our information in our Google Spreadsheet.

You can make these key references anything you want, but I recommend that you make them logical and have them match your column headers in your Google Sheet of attendees.

As an aside. I have added in attendance and grades into this to; 1, show you what it is capable of doing and 2, because I kinda feel that certificate of attendance courses should display grades and attendance under certain conditions. That’s just my soapbox and if you want to add to the discussion on this check out my Twitter post on the topic!

Once you have designed your certificate and added in all the items you want to change for each unique attendee you are done with the Google Slide for now.

Preparing your Google Sheet merge data

Open a new Google Sheet and create a header row in row 1 and then add all your data for each attendee in the following rows.

Take a look at my example.

Click to expand
If you click to expand the image above you will see that my header row consists of the following:

	Name
	ID
	Email
	Attendance
	Grade

As you probably have already figured out, we are not using an ID in our certificate, though we could if we wanted to. We might use it for our file name for our document.

	?You can support me for free by using this Amazon affiliate link in your next tech purchase :Computers & Stuff! ?

Also, we won’t be using the email on our certificate, but we will be using it to send our PDF certificates to attendees.

It doesn’t really matter how many extra columns of data you have. You just need to make sure that the header is on the first row and take note of the columns you want to use (More on this in a moment).

If you are playing along, you can access the file here:

Student Certificate Detials

Just go to File > Make a copy to create a version of your own to play with.

The Code

You will be adding two Google Apps Script files to your Google Slide certificate. To access the Google Apps Script editor from your slide go to Tools > Script Editor in your Google Slide menu.

Code.gs

There will be a file there already called Code.gs. Copy and paste in the following code (There is a copy item in the menu of the code block below as you hover over it).

		
		
			Code.gs
			

			

			
/*###
 * Create multiple versions of a Gogole Slide based on Google Sheet Data
 * and a Google Slide Template (Mailmerge)
 * The email can then be sent automatically.
 *###
 */

/** ###
 * Create a menu item in the Google Slide UI with 2 sub-menus once the
 * Slide is opened; One to create the certificate and one to email
 * certificates as PDFs.
 *
 * param {object} e: event object retrieved from the onOpen trigger. Unused here.
 */
function onOpen(e) {
 SlidesApp.getUi()
 .createMenu('Certifcate maker')
 .addItem('Create certificates', 'runsies')
 .addItem('Send certificates', 'emailNewSlideAsPDF')
 .addToUi();
}

/*###
 * Main run file sets up variables for insertion into the mailMerge()
 * function.
 */
function runsies() {
 //###Global Variables####
 //UPDATE all these variable except for the one titled: "MAPPED".
 const TEMPLATE_ID = '1noDxwEn5OVzVUsAoedOmO-jRhreNsjn6zP6yK8GOsuw';//Google Slide Template ID
 const SS_ID = '1mygJPZqK2o_7WjZzyFS5aotVuJX_meTIxz_9BjeKm-M'; //Google Sheet ID
 const SHEET_NAME = "Merge"; //The Google Sheet Tab name where your data is found.
 const FILE_NAME = ["ID", "Name"] // What you want as a file name. These are the sheet name references in Map.gs
 const EMAIL_COL = 2; // What column the email address is found on. Remember to subtract one from the column.
 //####END UPDATE#########

 const MAPPED = mappedDocToSheet;

 mailMerge(TEMPLATE_ID,SS_ID,SHEET_NAME,MAPPED, FILE_NAME,EMAIL_COL); //Run's the merge.

};

/** ###
 * Merges data from a Google Sheet into a newly created doc based on a
 * Google Doc template.
 *
 * Stores the newly created file ID and the associated email in GAS Properties Servies for later emailing.
 *
 * param {string} templateID: The id from the Google Doc template.
 * param {string} ssID: The id of the Google Sheet.
 * param {string} sheetName: the name of the sheet tab you are referencing.
 * param {object} mapped: Object array of data you mapped from your Doc template against your Google Sheet headers
 * param {array} fileNameDara: An array of data used to generate the file name.
 * param (number} emailCol: The column on your data sheet where user emails are displayed.
 * param {string} rowLen: (optional) If you want to add a number rows to create your merged documents.
 */
function mailMerge(templateID,ssID, sheetName, mapped, fileNameData, emailCol, rowLen = "auto"){
 //Properties Services is Google Script Storage.
 //This clears out the storage.
 PropertiesService.getScriptProperties().deleteAllProperties();

 const ss = SpreadsheetApp.openById(ssID);
 const sheet = ss.getSheetByName(sheetName);

 //Get number of rows to process
 rowLen = (rowLen = "auto") ? getRowLen() : rowLen;

 const range = sheet.getRange(1,1,rowLen,sheet.getDataRange().getNumColumns());
 const matrix = range.getValues();

 const fileNameRows = getFileNameRows()

 for(let i = 1; i < rowLen; i++){
 let row = matrix[i];
 //Get the title for the file.
 let fileName = buildFileName(row)

 //Creates a copy of the template file and names it with the current row's details.
 let newDoc = DriveApp.getFileById(templateID).makeCopy(fileName);

 //Replaces all the text place markers ({{text}}) with current row information.
 updateFileData(row, newDoc.getId());

 //Save new File ID and email to Properties service.
 PropertiesService.getScriptProperties()
 .setProperty(newDoc.getId(),row[emailCol]);

 };

 /**
 * Updates the copy of the new doc and replaces any data between {{ and }}
 * with the current row of data from the sheet.
 *
 * param {array} rowArray : current row in sheet
 * param {string} doc: ID of newly created document
 */
 function updateFileData(rowArray, doc){

 mapped.forEach(function(element){
 let textID = `\{\{${element.doc}\}\}`

 SlidesApp.openById(doc).replaceAllText(textID, rowArray[element.col])

 });
 };

 /**
 * Creates a filename based on supplied data.
 *
 * param {array} rowArray : current row in sheet
 * returns {string}: A new filename for each new doc.
 */
 function buildFileName(rowArry){
 let fileNameArray = fileNameRows.map(ele => rowArry[ele]);

 return fileNameArray.join("_");
 };

 /**
 * Gets the column location of each of the sheet headers used
 * create the filename.
 *
 * returns {array} : of column locations.
 */
 function getFileNameRows(){
 //Map the column indexes from fileNameData
 let fileNameLocs = fileNameData
 .flatMap(name => {
 return mapped.filter(element => element.sheet === name)
 .map(ele => ele.col);
 });

 return fileNameLocs;
 };
 /**
 * Gets the row lenght of last item of data in the sheet if none is selected.
 *
 * returns {number} : number of rows with data.
 */
 function getRowLen(){

 return sheet.getDataRange().getNumRows();
 };

};

 /**
 * Emails Google Slide Certificate to user but converts to PDF first
 *
 * Calls the Propeties Service to grab all the certificate slides that
 * have been stored as {id:email}
 * Slide is then converted to PDF before being sent.
 *
 */
 function emailNewSlideAsPDF(){
 //Get Properties from Properties Service
 const properties = PropertiesService.getScriptProperties().getProperties();

 for (var id in properties) {
 // Get the new slide File
 var newSlide = DriveApp.getFileById(id);

 //Send email
 let email = properties[id];

 //####UPDATE The following variables ####
 let subject = `Transdimensional Warp Slippers Training Course Certificate`;//Subject line.

 //Body of text. To create a new line use forward slash + n (\n)
 let body = `Hello Course Attendee, \n
 Congratulations on completing the Transdimensional Warp Slippers Training Course. We hope that you enjoyed the course
 and improved your skills. \n
 Please find your Certificate of Attendance attached. \n\n
 Respectfully, \n
 Yagisanatode: rainer`
 //#####END UPDATE #######################

 GmailApp.sendEmail(email, subject, body, {
 attachments: [newSlide.getAs(MimeType.PDF)], //Convert to PDF
 name: 'Email Automatically Sent'
 });
 }
};

			
					
					1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

					/*###
 * Create multiple versions of a Gogole Slide based on Google Sheet Data
 * and a Google Slide Template (Mailmerge)
 * The email can then be sent automatically.
 *###
 */

/** ###
 * Create a menu item in the Google Slide UI with 2 sub-menus once the
 * Slide is opened; One to create the certificate and one to email
 * certificates as PDFs.
 *
 * param {object} e: event object retrieved from the onOpen trigger. Unused here.
 */
function onOpen(e) {
 SlidesApp.getUi()
 .createMenu('Certifcate maker')
 .addItem('Create certificates', 'runsies')
 .addItem('Send certificates', 'emailNewSlideAsPDF')
 .addToUi();
}

/*###
 * Main run file sets up variables for insertion into the mailMerge()
 * function.
 */
function runsies() {
 //###Global Variables####
 //UPDATE all these variable except for the one titled: "MAPPED".
 const TEMPLATE_ID = '1noDxwEn5OVzVUsAoedOmO-jRhreNsjn6zP6yK8GOsuw';//Google Slide Template ID
 const SS_ID = '1mygJPZqK2o_7WjZzyFS5aotVuJX_meTIxz_9BjeKm-M'; //Google Sheet ID
 const SHEET_NAME = "Merge"; //The Google Sheet Tab name where your data is found.
 const FILE_NAME = ["ID", "Name"] // What you want as a file name. These are the sheet name references in Map.gs
 const EMAIL_COL = 2; // What column the email address is found on. Remember to subtract one from the column.
 //####END UPDATE#########

 const MAPPED = mappedDocToSheet;

 mailMerge(TEMPLATE_ID,SS_ID,SHEET_NAME,MAPPED, FILE_NAME,EMAIL_COL); //Run's the merge.

};

/** ###
 * Merges data from a Google Sheet into a newly created doc based on a
 * Google Doc template.
 *
 * Stores the newly created file ID and the associated email in GAS Properties Servies for later emailing.
 *
 * param {string} templateID: The id from the Google Doc template.
 * param {string} ssID: The id of the Google Sheet.
 * param {string} sheetName: the name of the sheet tab you are referencing.
 * param {object} mapped: Object array of data you mapped from your Doc template against your Google Sheet headers
 * param {array} fileNameDara: An array of data used to generate the file name.
 * param (number} emailCol: The column on your data sheet where user emails are displayed.
 * param {string} rowLen: (optional) If you want to add a number rows to create your merged documents.
 */
function mailMerge(templateID,ssID, sheetName, mapped, fileNameData, emailCol, rowLen = "auto"){
 //Properties Services is Google Script Storage.
 //This clears out the storage.
 PropertiesService.getScriptProperties().deleteAllProperties();

 const ss = SpreadsheetApp.openById(ssID);
 const sheet = ss.getSheetByName(sheetName);

 //Get number of rows to process
 rowLen = (rowLen = "auto") ? getRowLen() : rowLen;

 const range = sheet.getRange(1,1,rowLen,sheet.getDataRange().getNumColumns());
 const matrix = range.getValues();

 const fileNameRows = getFileNameRows()

 for(let i = 1; i < rowLen; i++){
 let row = matrix[i];
 //Get the title for the file.
 let fileName = buildFileName(row)

 //Creates a copy of the template file and names it with the current row's details.
 let newDoc = DriveApp.getFileById(templateID).makeCopy(fileName);

 //Replaces all the text place markers ({{text}}) with current row information.
 updateFileData(row, newDoc.getId());

 //Save new File ID and email to Properties service.
 PropertiesService.getScriptProperties()
 .setProperty(newDoc.getId(),row[emailCol]);

 };

 /**
 * Updates the copy of the new doc and replaces any data between {{ and }}
 * with the current row of data from the sheet.
 *
 * param {array} rowArray : current row in sheet
 * param {string} doc: ID of newly created document
 */
 function updateFileData(rowArray, doc){

 mapped.forEach(function(element){
 let textID = `\{\{${element.doc}\}\}`

 SlidesApp.openById(doc).replaceAllText(textID, rowArray[element.col])

 });
 };

 /**
 * Creates a filename based on supplied data.
 *
 * param {array} rowArray : current row in sheet
 * returns {string}: A new filename for each new doc.
 */
 function buildFileName(rowArry){
 let fileNameArray = fileNameRows.map(ele => rowArry[ele]);

 return fileNameArray.join("_");
 };

 /**
 * Gets the column location of each of the sheet headers used
 * create the filename.
 *
 * returns {array} : of column locations.
 */
 function getFileNameRows(){
 //Map the column indexes from fileNameData
 let fileNameLocs = fileNameData
 .flatMap(name => {
 return mapped.filter(element => element.sheet === name)
 .map(ele => ele.col);
 });

 return fileNameLocs;
 };
 /**
 * Gets the row lenght of last item of data in the sheet if none is selected.
 *
 * returns {number} : number of rows with data.
 */
 function getRowLen(){

 return sheet.getDataRange().getNumRows();
 };

};

 /**
 * Emails Google Slide Certificate to user but converts to PDF first
 *
 * Calls the Propeties Service to grab all the certificate slides that
 * have been stored as {id:email}
 * Slide is then converted to PDF before being sent.
 *
 */
 function emailNewSlideAsPDF(){
 //Get Properties from Properties Service
 const properties = PropertiesService.getScriptProperties().getProperties();

 for (var id in properties) {
 // Get the new slide File
 var newSlide = DriveApp.getFileById(id);

 //Send email
 let email = properties[id];

 //####UPDATE The following variables ####
 let subject = `Transdimensional Warp Slippers Training Course Certificate`;//Subject line.

 //Body of text. To create a new line use forward slash + n (\n)
 let body = `Hello Course Attendee, \n
 Congratulations on completing the Transdimensional Warp Slippers Training Course. We hope that you enjoyed the course
 and improved your skills. \n
 Please find your Certificate of Attendance attached. \n\n
 Respectfully, \n
 Yagisanatode: rainer`
 //#####END UPDATE #######################

 GmailApp.sendEmail(email, subject, body, {
 attachments: [newSlide.getAs(MimeType.PDF)], //Convert to PDF
 name: 'Email Automatically Sent'
 });
 }
};

			

		

The Code.gs file is your main run file that will create your menu, run your mail merge to create all your certificate and then email them off as PDFs.

Map.gs

Next, in the Script Editor go to File > plus sign> Script file. Name the file Map.gs.

Click to Expand!
Copy and paste in the following code into this new file.

		
		
			Map.gs
			

			

			
/*###
 * Maps the relationship between the Google Sheet header and its location
 * for each column along with it's corresponding Google Slide Doc template name.
 *
 * To update change the sheet, col and doc:
 * ***
 * {
 * sheet: << Your sheet header
 * col: << The column on the google sheet with the above header
 * doc: << the corresonding name in double braces {{name}} in your Slide template
 * }
 * ***
 *###
 */
const mappedDocToSheet = [
 {
 sheet:"Name",
 col:0,
 doc:"name"
 },
 {
 sheet:"ID",
 col:1,
 doc:"ID"
 },
 {
 sheet:"Attendance",
 col:3,
 doc:"attendance"
 },
 {
 sheet:"Grade",
 col:4,
 doc:"grade"
 },
];

			
					
					1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

					/*###
 * Maps the relationship between the Google Sheet header and its location
 * for each column along with it's corresponding Google Slide Doc template name.
 *
 * To update change the sheet, col and doc:
 * ***
 * {
 * sheet: << Your sheet header
 * col: << The column on the google sheet with the above header
 * doc: << the corresonding name in double braces {{name}} in your Slide template
 * }
 * ***
 *###
 */
const mappedDocToSheet = [
 {
 sheet:"Name",
 col:0,
 doc:"name"
 },
 {
 sheet:"ID",
 col:1,
 doc:"ID"
 },
 {
 sheet:"Attendance",
 col:3,
 doc:"attendance"
 },
 {
 sheet:"Grade",
 col:4,
 doc:"grade"
 },
];

			

		

Now save your Google Apps Script Project. You will be prompted to rename your project. I often just rename the project to the same name as the Google Slide it is attached to, but this isn’t necessary.

The Map.gs file stores all the relationship data between your Google Slide key references and your Google Drive applicants info.

Set up the Code for your Project

Once you have the code copy and pasted in place, we will need to make some changes to some key areas.

Maps.gs

First, let’s navigate to Maps.gs. When you create your own certificate, you will have to edit the array of values you find in the script. Essentially, we want to connect a target item like {{name}} in our Google Slide, with our Name column in our Google Sheet. You will need to do this for each time you want to input into your Slide.

So if I want to pair my slide key reference to my Sheet, I would need to edit the following:

		
		
			
			

			

			
 {
 sheet:"Name",
 col:0,
 doc:"name"
 },

			
					
					1
2
3
4
5

					 {
 sheet:"Name",
 col:0,
 doc:"name"
 },

			

		

The sheet key refers to the header name in your Google Sheet. The col key refers to the column number. In coding the column number often starts at zero. So if the name is in column A then the column would be zero.

The doc is the key reference on your Google Slide that you put in double curly braces {{}}.

Click to expand
If you have fewer references, just delete out the object in the braces. If you want more, copy and paste a previous one and update the values to match your needs.

Once you have updated all your references, move onto the next step.

Code.gs

Global variables

For your own project, you are going to have to update two locations in your Code.gs file. I have highlighted them and named them in the Code for reference above, but for conveniences, let me add the chunk you need to edit below so I can explain them.

		
		
			runses
			

			

			
 //###Global Variables####
 //UPDATE all these variable except for the one titled: "MAPPED".
 const TEMPLATE_ID = '1noDxwEn5OVzVUsAoedOmO-jRhreNsjn6zP6yK8GOsuw';//Google Slide Template ID
 const SS_ID = '1mygJPZqK2o_7WjZzyFS5aotVuJX_meTIxz_9BjeKm-M'; //Google Sheet ID
 const SHEET_NAME = "Merge"; //The Google Sheet Tab name where your data is found.
 const FILE_NAME = ["ID", "Name"] // What you want as a file name. These are the sheet name references in Map.gs
 const EMAIL_COL = 2; // What column the email address is found on. Remember to subtract one from the column.
 //####END UPDATE#########

			
					
					1
2
3
4
5
6
7
8

					 //###Global Variables####
 //UPDATE all these variable except for the one titled: "MAPPED".
 const TEMPLATE_ID = '1noDxwEn5OVzVUsAoedOmO-jRhreNsjn6zP6yK8GOsuw';//Google Slide Template ID
 const SS_ID = '1mygJPZqK2o_7WjZzyFS5aotVuJX_meTIxz_9BjeKm-M'; //Google Sheet ID
 const SHEET_NAME = "Merge"; //The Google Sheet Tab name where your data is found.
 const FILE_NAME = ["ID", "Name"] // What you want as a file name. These are the sheet name references in Map.gs
 const EMAIL_COL = 2; // What column the email address is found on. Remember to subtract one from the column.
 //####END UPDATE#########

			

		

You can find this on lines 29 – 36 of your Code.gs file.

Here you find a list of variables:

	TEMPLATE_ID : This is the file ID of your Google Sheet. You can find the file ID in the URL of your Google Sheet. Each file ID is unique. Copy the file ID in and paste it between the single quotation marks replacing the current ID.

Click to expand
	SS_ID : This is the file ID for your Google Sheet of attendees. Go to your Google Sheet and copy the file ID from the URL and replace the one that is there.
	SHEET_NAME : This is the name of the sheet found on the sheet tab at the bottom left of your Google Sheet. In this example, the sheet is named Merge.
	FILE_NAME : This is the name of the file you want to create. This is an array that contains any value from your mappedDocToSheet variable in your Map.gs file. This will create a certificate file for each applicant that contains their ID and their Name. You can add or remove these file name reference items to create your own custom file name.

Click to expand.
	EMAIL_COL : This is the email column in your Google Sheet. Remember here that the column starts at zero. In our example, the email column is column 2.

Writing your email message

The final thing you will need to edit is the message that you are going to email along with your PDF to your attendees.

		
		
			Email Message
			

			

			
 //####UPDATE The following variables ####
 let subject = `Transdimensional Warp Slippers Training Course Certificate`;//Subject line.

 //Body of text. To create a new line use forward slash + n (\n)
 let body = `Hello Course Attendee, \n
 Congratulations on completing the Transdimensional Warp Slippers Training Course. We hope that you enjoyed the course
 and improved your skills. \n
 Please find your Certificate of Attendance attached. \n\n
 Respectfully, \n
 Yagisanatode: Trainer`
 //#####END UPDATE #######################

			
					
					1
2
3
4
5
6
7
8
9
10
11

					 //####UPDATE The following variables ####
 let subject = `Transdimensional Warp Slippers Training Course Certificate`;//Subject line.

 //Body of text. To create a new line use forward slash + n (\n)
 let body = `Hello Course Attendee, \n
 Congratulations on completing the Transdimensional Warp Slippers Training Course. We hope that you enjoyed the course
 and improved your skills. \n
 Please find your Certificate of Attendance attached. \n\n
 Respectfully, \n
 Yagisanatode: Trainer`
 //#####END UPDATE #######################

			

		

You will find this from lines 170 to 180 of your Code.gs file.

You will need to update two variables. Both of these variables are contained with backticks (`). These are different from single quotation marks (‘).

	subject : This is the subject line of your email. You can delete out all the text within the backticks here and replace it with your own subject line.
	body : This is the main content of your email. We haven’t gone with any fancy HTML here just some standard text. If you want to create a new line then use the forward-slash followed by ‘n’ (\n). If you want to use HTML in your email message, check out this tutorial:

Google Apps Script: Create an HTML email reminder service from Google Sheet data.

Once you have made all your modifications save the script, go back to your Google Slide certificate page.

Running the Code

Getting the new menu

To access the new menu items all you need to do is refresh your Google Slide document.

Creating the Certificates

To create the certificates go to Certificate maker > Create certificates. The first time the code runs you will get a list of warnings.

First, click on advanced. The window will expand.

Then click Go to Cert of Attendance – Warp Slippers (Unsafe). This will open a new window with a list of all the things the code will access and provide authorisation for the script to use.

Hit Allow.

You may have to go in and click the menu item again to run the code the first time. This authorization process will only run once.

So what’s with all the warnings? Well, Google is doing the right thing here and trying to help protect you from any nefarious code. This process will occur on any new code project that requires special authorisation. If you don’t trust the author of the code or can read the code to check it isn’t doing anything naughty simply don’t click Allow.

Once the code is running it will start to create duplicates of the template updating them with your Google Sheets info and renaming the files. This will generate a list of Google Slide certificates in the same directory as your template.

Give it a little time to work it’s magic before you open a file. Then open one up to check it all worked as planned:

Great you have your list of Certificates.

Emailing the Certificates as PDFs

Once the certificates have been created, it’s time to email them to the attendees. In the menu bar go to Certificate maker > Sendcertificates. This will email out all the certificates in your list.

The attendee will receive an email similar to this:

Click to expand
You might have noticed that the attached certificate has been converted to a PDF.

Here is what it looks like:

Click to Expand
One thing to keep in mind is that Google Apps Script does set some limits on how many emails you can send or the runtime of your script. It is worthwhile to check the quotas out if you intend on producing hundreds of certificates and sending them.

That’s it all done. You have automated your certificate!

Need help with Google Workspace development?

My team of experts can help you with all of your needs, from custom app development to integrations and security. We have a proven track record of success in helping businesses of all sizes get the most out of Google Workspace.

Schedule a free consultation today to discuss your needs and get started or learn more about our services here.

A Little Summary of Highlights for the Coders

A full rundown on the mail merge process can be found in a previous post, Google Apps Script: Create multiple versions of a document based on Google Sheet Data and a Google Doc Template (Mail Merge). About 85% of the code is the same and is a good use case for reusability of code.

So what did I change?

Well, I needed to send out an email once the Google Slides were created for each attendee. I had planned on doing it all in one runtime … and then I looked at how long that was taking each attendee and thought better of it. I also rationalised that it would probably be better to have a pause between the certificate creation process and the email process should the user wish to make any changing.

Emailing the attendee as a separate process.

Emailing the attendee as a separate process had its own interesting challenges. Most notably, how was I going to find the attendees file again quickly and match it to their email? In the end, the fastest way I thought to do this was to sort the attendee’s email along with the file ID of their newly created Google Slide certificate in the PropertiesService.

PropertiesService allows you to store small amounts of data in key-value pairs that are connected directly to the script.

My first addition to the script to implement this was to clear any preexisting data in the Properties Service (Line 61):

PropertiesService.getScriptProperties().deleteAllProperties();

Then, at the end of the loop iterating through each row of merge data, I stored each newly generated file id as a key and it’s associated email as a value inside the script PropertiesService. (lines 88-89)

		
		
			
			

			

			
 PropertiesService.getScriptProperties()
 .setProperty(newDoc.getId(),row[emailCol]);

			
					
					1
2

					 PropertiesService.getScriptProperties()
 .setProperty(newDoc.getId(),row[emailCol]);

			

		

This is a pretty neat way of storing small amounts of data.

Then when it was time to email the attendee. I called the PropertiesService class getting all the properties within and then looped through each property grabbing the key as the file ID and the value as the email. (Lines 161-168)

		
		
			
			

			

			
 function emailNewSlideAsPDF(){
 //Get Properties from Properties Service
 const properties = PropertiesService.getScriptProperties().getProperties();

 for (var id in properties) {
 // Get the new slide File
 var newSlide = DriveApp.getFileById(id);

 //Send email
 let email = properties[id];

			
					
					1
2
3
4
5
6
7
8
9
10

					 function emailNewSlideAsPDF(){
 //Get Properties from Properties Service
 const properties = PropertiesService.getScriptProperties().getProperties();

 for (var id in properties) {
 // Get the new slide File
 var newSlide = DriveApp.getFileById(id);

 //Send email
 let email = properties[id];

			

		

Converting the Slide to PDF was super easy

I had done this previously some years ago and completely forgot how to do it. Thus spending far too long looking at blob files and whatnot only to discover for the second time that it was a super easy process and one I could do during the email structuring phase inside the GmailApp class with the help of a DriveApp method called getAs.

The getAs method allows converting the file type, particularly of a Google file, into something else like a PDF. So once I had the file name of the Google Slide I simply called getAs on it and changed the mime type to PDF and bang! I had myself a PDF. The conversion was pretty quick also.

When you send an email with GmailApp you can send a bunch of optional object data along with it. This optional data includes an attachment. So during the attachment phase, I simply converted the Google Slide to a PDF and it was shipped off as a PDF.

Pretty cool, hey?

Conclusion

This is the second mail merge-type script I have created with similar code and one of many types of merging I have built a tutorial for on this site. The code is quite easy to modify for not only other slide projects but for other document merging projects.

Go out there and give it a try. I would love to hear in the comments about what projects you have adapted this too.

If you enjoyed this tutorial, please click like. And if you want to say up to date on what I am creating next, please subscribe (Top right of the page).

~Yagi

Share this:
	Click to share on Twitter (Opens in new window)
	Click to share on Facebook (Opens in new window)
	Click to share on LinkedIn (Opens in new window)
	Click to share on Odysee (Opens in new window)
	

Like this:
Like Loading...

	Related

	

	
		Author YagiPosted on Categories Code, DriveApp, Gmail App, Google Apps Script, Google Slides, PropertiesService, Sheets, SlidesAppTags DriveApp, gmailApp, Google Sheets, Google Slides, PropertiesService, SpreadsheetApp			

			
			3 thoughts on “Google Apps Script: Automated PDF Certificated Creator That Is Emailed to the Attendee (Updated Feb 2022)”		

		
			
			
				
					
												Anthony says:					

					
						 at 3:40 am					

									

				
					Brilliant!

Loading...

				

				Reply
			
		
	
			
				
					
												Deepak says:					

					
						 at 5:13 am					

									

				
					Hi,

I am very new to programming and found your code very helpful. I am trying to automate one part of my daily work using your code. However I am stuck on the email body of this code. So request your suggestions.

I am trying to add the Name after “Hello” and add few more data from the columns of the spreadsheet in the body part but failed to do that. I have used for loop but it is giving no result.

Is there any way to call some values direct in the body part of the email.

let body = Hello Course Attendee, \n

 Congratulations on completing the Transdimensional Warp Slippers Training Course. We hope that you enjoyed the course

 and improved your skills. \n

 Please find your Certificate of Attendance attached. \n\n

 Respectfully, \n

 Yagisanatode: rainer

How to add a static image in the email body for all the emails.

I have checked one of your tutorials

https://yagisanatode.com/2019/05/27/google-apps-script-create-an-html-email-reminder-service-from-google-sheet-data/

But I failed to do so.

Request your help.

Thanks!

Loading...

				

				Reply
			
			
			
				
					
												Yagi says:					

					
						 at 12:07 pm					

									

				
					Hi Deepak,

You could store more than the email in the properties service (Line 88). For example:

 .setProperty(newDoc.getId(),[row[emailCol],row[column for users name], etc);

Then in your emailNewSlideAsPDF() function you will need to use JSON.parse on your properties service properties just after line 162 so that you have an array. Imagine we set that to the variable prop. The email value will be prop[0].

Next in your email text, you will be able to insert those email values by something like this, Hi ${prop[1]},

Have a play around with it. This should point you in the right directions.

Cheers,

Yagi.

Loading...

				

				Reply
			
		

		
	
	
	
		
			Leave a ReplyCancel reply
			
				
									
									
					
					
							

		

		
		

		

	
		Post navigation

		Previous Previous post: Google Sheets Beginners: Conditional Formatting (09)
Next Next post: Running Google Apps Script for the First Time: What’s with all the Warnings!

	
	

	
			
			Want regular updates to Yagisanatode? Subscribe

			
			
									Enter your email address to subscribe to this blog and receive notifications on Google Sheets, Google Apps Script and Google Workspace new posts by email.

										
						
							Email Address						
						
					

					
						
						
						
						
												
							Subscribe						
					

							

							
					Join 518 other subscribers				

						

			

	
		
	

	Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.

To find out more, including how to control cookies, see here:
		
		Cookie Policy	

		

	
			
					

	

	
		

	
		
			Search for:		
		
	
	
		Search	

 Buy Me a Coffee

 Become a Member!

 Your continued support allows me to allocate more time to focus on creating more tutorials, tools and apps for you and the greater public.

 Join

Subscribe to Yagisanatode!!!

			
			
									Enter your email address to subscribe to this blog and receive notifications of new posts by email. Pat the goat!

										
						
							Email Address						
						
					

					
						
						
						
						
												
							Subscribe						
					

							

							
					Join 518 other subscribers				

						

			
Categories

				Apps (5)

	Code (121)
	Google Apps Script (105)
		AdminDirectory (1)

	Advanced Google Services (4)

	Calendar API (2)

	Card Service (2)

	Charts API (1)

	Chat Apps (3)

	Classroom (1)

	Custom Functions (4)

	Docs (3)

	DocumentApp (6)

	Drive Activity API (1)

	Drive API (4)

	DriveApp (9)

	FormApp (4)

	Gmail API (3)

	Gmail App (4)

	Google Picker (1)

	GroupsApp (1)

	HtmlServie (14)

	Lock Serivce (1)

	MailApp (5)

	PropertiesService (6)

	ScriptApp (5)

	Session Class (2)

	Sheets (62)

	Sheets Advanced Service (2)

	Sidebar (5)

	SlidesApp (2)

	Triggers (15)

	UI Class (7)

	UrlFetchApp (6)

	Utilities (2)

	Web App (5)

	Google Cloud (1)
		Service Accounts (1)

	Javascript (13)

	Python (8)
		Tkinter (3)

	Google Suite (113)
	Gmail (1)

	Google Forms (4)

	Google Sheets (101)
		Google Sheets Advanced (7)

	Google Sheets Basics (56)

	Google Sheets Intermediate (19)

	Google Slides (3)

	GWAOw! (6)

	Statistics (11)

	Uncategorized (35)

			
		
		Recent Posts

			
					Google Sheets FILTER function: Dates and Times
									
	
					Preventing Cross-Site Request Forgery (CSRF) in Google Apps Script Dialogs and Sidebars
									
	
					Adding Charts to Google Workspace Add-on Sidebar Apps with Apps Script
									
	
					Add the Editor’s Email when they Tick the Check Box in Google Sheets with Apps Script
									
	
					Creating Webhooks for Google Chat App with Apps Script
									
	
					Get the Difference Between Two Arrays in JavaScript
									
	
					How do I reverse a range by Rows or Columns in Google Sheets
									

		About Comments
			I like to make sure comments are as valuable as possible for you, the reader, and for myself as a reference. This is why I review comments before posting them.

Please don’t be disheartened by the delay. Like you, I have a busy life, but I will be sure to get back to you should your comment add value to the post.

A Learning Tool

This site is as much a learning tool for you as it is for me. I am much more likely to help you if you make an attempt at a problem and post it. That’s how we all learn.

		Recent Comments
	Yagi on List all files and folders in a selected folder’s directory tree in Google Drive: Apps Script
	Pamela Marcum on List all files and folders in a selected folder’s directory tree in Google Drive: Apps Script
	JB on Add the Current Date to a Sheet When Data Is Added So That The Date Does Not Change(Static) – Google Sheets (Updated July 2023)
	????Preventing Cross-Site Request Forgery (CSRF) in Google Apps Script Dialogs and Sidebars – AppsScriptPulse on Preventing Cross-Site Request Forgery (CSRF) in Google Apps Script Dialogs and Sidebars
	Google Sheets FILTER function: Dates and Times - Yagisanatode on Google Sheets: How to use OR inside a FILTER

Archives

				February 2024
	December 2023
	October 2023
	September 2023
	August 2023
	July 2023
	June 2023
	May 2023
	March 2023
	February 2023
	January 2023
	December 2022
	November 2022
	October 2022
	September 2022
	August 2022
	July 2022
	June 2022
	May 2022
	April 2022
	March 2022
	February 2022
	January 2022
	December 2021
	November 2021
	October 2021
	September 2021
	August 2021
	July 2021
	June 2021
	May 2021
	April 2021
	March 2021
	February 2021
	January 2021
	December 2020
	November 2020
	October 2020
	September 2020
	August 2020
	July 2020
	June 2020
	May 2020
	April 2020
	March 2020
	February 2020
	January 2020
	December 2019
	November 2019
	October 2019
	September 2019
	August 2019
	July 2019
	June 2019
	May 2019
	April 2019
	March 2019
	February 2019
	January 2019
	December 2018
	November 2018
	October 2018
	September 2018
	August 2018
	July 2018
	June 2018
	May 2018
	April 2018
	March 2018
	February 2018
	December 2017
	November 2017

			Contact
			Desperately need to contact me?

Click Contact Me.

		
	© 2017-
 Yagisanatode.com

	

		

		
							
						Code
	Google Apps Script
	Google Sheets
	GWAOw!
	Courses
	Products
	Python
	About
	Privacy Policy
	Google Add-on Apps Terms and Conditions (“Terms”)
	Contact
	Advertise

	Hire Me

				
			
			
			
								Yagisanatode
								
					Proudly powered by WordPress				
			

		
	

	
			
		

		
		

		
		

		
		

		

				
				
			
				
			

		

		

		
			
			
				

				
					
						
							
						
						
							
						
					
				

				
					
						
							
						
						
							
						
					
				

			

			
			
				
					
						
					
					
						
					
				
			

			
			
				
					
						

						

					

					
						

					

					
						
							
								
									
										
									
									
										
									
								
							
						
												
							
								
									
										
									
									
										
									
								

								
							
						
											

				

				
					
						
							

						

						
															
									Loading Comments...
								

								

								
									
									

																														
												Write a Comment...
												
												
													
																													
																Email (Required)
																
															

															
																Name (Required)
																
															

															
																Website
																
															

																											

													
												

											

																											

													

						
							
								
									

								

								

							

							

							
								
									
										
									
									
										
									
								
								
							
							

						

					

				

			

		

		

		
	
				

		
	%d

			
		